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The present paper studies the optimal behavior of the firm facing
labor friction characterized by convex hiring cost and sufficiently
differentiated output good. The problem turns out to be a singular
control problem. General paths are studied including socially inef-
ficient ones caused by the rise of demand constraint. Analysis of
optimal firing behavior becomes possible with this setup. It turns
out that the singularity brings costate jumps at junction points to
the firing phase, which result in the discontinuity of production.
Those jumps have been known to occur in problems with inequality
constraints that contain only state variables. The present model
shows that they can occur with inequality constraints with control
variables too when singularity is present.
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I. Introduction

The present paper studies the optimal behavior of the firm facing labor friction
characterized by convex hiring cost and sufficiently differentiated output good.
Even though there are conflicting arguments on empirical applicability of convex
hiring cost, from the point of view that hiring cost is a variation of adjustment
cost, it should be natural to assume it from the theoretical perspective.1 The con-
vexity in hiring cost makes the labor adjustment process time-consuming, which
in turn determines the level of income and demand for output at every moment
while the adjustment process is still going on. When output goods are sufficiently
differentiated, for such an adjustment process to be fulfilled, expectation on the
social choice of the equilibrium path must be shared uninterruptedly among firms
that the economy ultimately reaches to the long-term equilibrium. If expectation
is not well-coordinated, the investment in labor by a single firm according to the
efficient path will cause a loss, since any discount in output prices will not re-
trieve the cost of investment. It raises multiple inefficient paths that depend on

1Yashiv (2000) and Blatter, Muehlemann and Schenker (2012) support convexity. On the other hand,
Abowd and Kramarz (2003) and Kramarz and Michaud (2010) finds concavity for long-term workers in
France. However, the hiring cost in the latter is defined to be directly observable ones which differs from
our setup that the cost arises from the wage payment to workers internally allocated to the hiring sector
and arises from decreasing returns in both production and hiring sectors.

1
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the degree of coordination. Yashiv (2006, 2007) analyzed the efficient equilibrium
in an economy with convex hiring cost. The present paper extends them to those
inefficient cases. In the sense that expectation is the main driving force of busi-
ness cycles, the model shares the spirit with news-driven business cycle models
by Beaudry and Portier (2004) and others. However, in our model, the source
of expectation is not limited to technological news on productivity fluctuation,
but it is more generalized shared view about future equilibrium characterized by
nature of beauty contest.

A firm operating in an economy with labor friction has an intertemporal hori-
zon. However, a model of a going concern with no firing cost easily falls in the
category of singular control problems. They are the cases in which Hamiltonian
becomes independent from some control variables and the (ordinal procedure)
of the maximum principle does not allow to find the optimal control value.2

It occurs when the switching function becomes zero. Even though there were
cases that singularity is artificially evaded in early times as Johnson and Gibson
(1963) pointed out, obviously it is not guaranteed that those singularity should be
“pathological”. The model studied in this paper shows that singularity is indeed
not only unexcludable but comprises important part of business cycles. Namely,
the firing phase is singular. Moreover, since the singular control is derived from
the resulting state constraint on the boundary, the optimal control in the firing
phase is determined only in a derivative form, leaving determination of the initial
condition out of the firing phase. It brings intertemporal discontinuity in costate
variables and thus in the output level. This is a similar property to optimal
control problems with state variable inequality constraints (SVICs), which is ba-
sically brought by the truncatability of the problem into subperiods. It is known
that the occurrence time of costate discontinuity in state-constrained problems is
generally indeterminate between entering and leaving times.3 It will be proved
that our setup shows the discontinuity in both times.

The properties of the model with no firing cost gives a good implication for a
model with firing cost. It tells us that firing is optimal to visit in a chunk on
the first day of the firing phase in general. With firing cost, such a discontinuous
behavior is too costly. The firm is better to keep idle employment as far as the
cost to hold it measured in its absolute value (which is negative) is less than the
firing cost. Thus, it brings labor hoarding.

Section II explains the model. Section III analyzes steady states both with
unbounded and bounded demand constraints. Section IV and V study out of
steady states. Section IV examines firing phase and Section V examines the
entering and exiting from those phases. Section VI examines implication to labor
hoarding. Section VII studies how labor hoarding behavior changes when there is
convex firing cost. Section VIII shows that linear firing cost mixes results of the

2Rozonoer (1959).
3This is true for many of problems. Hartl, Sethi and Vickson (1995) points out a case in which the

discontinuity occurs within the boundary intervals.
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basic model and that of Section VII. Section IX examines the implication on wage
bargaining and the endogenization of bargaining process in the firm. Section X
concludes.

II. The model with no firing regulation: a singular control problem

Consider an economy with differentiated output goods produced by labor.
Goods are perishable. The labor market is frictional. Firms engage in two activ-
ities, production of goods and hiring of future workers. The production function
of goods is denoted by f(l̂) where l̂ ≥ 0 is the measure of employment in the pro-
duction sector. The firm faces hiring friction, that is hiring is not an autonomous
unattended process but requires expense of internal resources to get hiring re-
sults. The hiring activity of the firm is expressed by an independent production
function g(l̃; θ) where l̃ ≥ 0 is the measure of employment in the hiring sector
and θ is a parameter which represents vu ratio in the labor market. In harmless
places, we just omit θ to represent it g(l̃) and treat it as a time-varing function.
It can be shown that the optimal firm efficiently utilizes existent employment in
the no firing cost case. So for the moment we simply assume that the sum of the
employment in the production and hiring sectors equates the total employment,4

i.e. l̂ + l̃ = l where l is the total employment of the firm. Both f and g obey
decreasing returns, Inada conditions and f(0) = g(0; θ) = 0. It implicitly assumes
the presence of hidden fixed inputs such as real estate. Suppose the total cost of
hidden input factors is c. This is a simplification assumption to focus on the em-
ployment behavior of the firm. The decreasing returns of g(·) represents convex
hiring cost. The employees separate from the firm at instantaneous rate σt > 0.
In addition, the firm can intentionally reduce the employment by firing denoted
by xt ≥ 0. Therefore, the transition of labor becomes

(1) l̇t = g(l̃t; θt)− σt lt − xt.

The real wage rate is denoted by a right-continuous function of time wt > 0. It is
assumed to be bargained between the industry representative and the industry-
wide labor union so that the process of wage determination stays exogenous to
the firm. This assumption makes the analysis considerably simple. The endog-
enization of the wage bargaining process is yielded to another paper. The firm
discounts future real profits by instantaneous rate r > 0. Since hiring is the in-
vestment decision made by the firm, it must have intertemporal horizon. Then,
denoting the value as of time t when initial labor is l by Π(t, l), the value of the
representative firm as of present time t = 0 becomes

Π(0, l0) = max
l̂,x

∫ ∞

0

(

f(l̂)− w l − c
)

e−rtdt

4This assumption will be removed as we introduce the firing cost later.
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which is subject to the labor transition (1) and the demand constraint

(2) f(l̂) ≤ y

and the following constraints on control variables.

0 ≤ l̂ ≤ l(3)

0 ≤ x <∞(4)

Two points need to be mentioned. First, the demand constraint (2) is assumed
to be potentially binding, in which y > 0 is the demand directed to the firm
which would have been met if there were not the hiring cost, and it is assumed
to be continuously time-differentiable. The presence of this inequality is a re-
flection of insufficiency in price mechanism in the time-consuming adjustment
process of sufficiently differentiated output good. It should be emphasized that
immediate adjustment of labor is suboptimal with convex hiring cost, so the
adjustment process involves time where actual production is undertaken at any
moment. In general, y is a function of lifetime income, the rate of interest and, in
off-equilibrium context, output price, given the capacity limit imposed by the hir-
ing technology. The level of lifetime income depends on the degree of expectation
coordination among firms, since attempts to break the constraint by a single firm
will fail. It requires coordinated move by firms of positive measure to increase
output breaking the binding constraint.5 Conditions that the demand constraint
becomes effective will be explained later in this section. Since coordinated out-
put accompanies the distribution of realized income earned by firms, y can be
interpreted as effective demand in the sense that the demand is not just planned
but endorsed by purchasing power. With the current assumption of perishable
output good, y is simply current income in equilibrium that reflects the degree of
coordination among firms.

Second, even though the firing variable x enters linearly in Hamiltonian, fi-
nite upper bound technically required by a regular linear problem will be proved
unnecessary in (4) except for the initial adjustment. If initial employment is ex-
tremely large for some reason, there will be massive firing at t = 0 resulting in
discrete adjustment of employment, which implies x0 = +∞. It can be heuris-
tically confirmed by placing limit of a sequence of problems with upper bound
x̄ < +∞ in admissible x and taking x̄ ↑ +∞. It imposes an assumption that
catastrophe never happens in the limit. However, in a rigorous treatment, it does
not conform to the framework of the maximum principle. If such a treatment is
necessary, we can start the problem after initial discrete adjustment is already
done if it were to exist. Namely, initial employment l0 is assumed to be in the
domain that the optimal employment path starting from it is guaranteed to be

5If such a move is not unanimous and if there is any theoretical structure to make it an equilibrium,
it brings heterogeneity in output prices and market shares.
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continuous. This setup makes the problem solvable by the maximum principle.
Anyway except for the initial discrete adjustment which can potentially happen,
the optimal firing turns out to be singular, i.e. x is not a bang-bang.6 The proof of
the following claim will be represented after optimal conditions are characterized
in Section IV.

CLAIM 1: Suppose y is continuously differentiable except for the junction times
from/to the firing phase and x faces a constraint x ∈ [0, x̄] where x̄ <∞. If x̄ is
set sufficiently large corresponding to the maximum variation of y, the optimal x
is never bound by x̄ except for the initial adjustment.

Costate variable of l is denoted by λ, Lagrangean of demand constraint by µ ≥ 0
and that of l̂ ≤ l by η ≥ 0. The optimal dynamics of the costate variable becomes

(5) λ̇ = −
[

g′(l − l̂)− (r + σ)
]

λ+ w − η.

for any time at which l is differentiable. Since y is assumed to be strictly pos-
itive and f satisfies Inada conditions, l̂ > 0 always holds. Then, the first order
condition becomes

(6) (1− µ) f ′(l̂) = λ g′(l − l̂) + η

and for firing, by imposing arbitrarily large x̄ > 0,

(7) x =











0 if λ > 0

[0, x̄] if λ = 0

x̄ if λ < 0.

Together with (5) and (6), the optimal condition when l̂ ≤ l is not binding can
be expressed as

(8) (r + σ)λ = (1− µ) f ′(l̂)− w + λ̇.

This form of optimal costate dynamics states that, when the value of the firm
is viewed as abstract capital, its marginal cost equates the sum of instantaneous
effective marginal profits and marginal capital gain. To see it, integrate equation
(8) through l. Then, the left-hand side of (8) becomes (r + σ) Π and its right-

hand side becomes
∫

(1− µ) f ′(l̂)dl − wl + Π̇. Namely, the left-hand side of the
integrated form is the corporate cost of capital with separation premium σ. Its
right-hand side is the instantaneous profits plus capital gain where the revenue is
discounted by the shadow price of demand constraint. (8) claims that these are
equated marginally in optimum.

6For a singular control problem, see Johnson and Gibson (1963) and Kelly, Kopp and Moyer (1967).
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To see the condition that breaking the demand constraint (2) is unprofitable
and thus it persists in the problem as a constraint, focus on the time immediately
after the entering time to the constraint and denote the individual demand curve
at that time by z = d(p, r, ψ) where z is quantity of output good in circulation
in the market, p is the individual output price, r is market interest rate and ψ
is the current “average” income per firm given future income. Normalizing total
measure of firms to be one, ψ can be regarded as the aggregate income with sim-
plification assumption that demand schedule to each differentiated good is equal.
Then d(1, r, ψ) = ψ holds. The output good in circulation or the ex post supply of

product can be expressed as z = min{f(l̂), d(p, r, ψ)}. If f(l̂) > d(p, r, ψ), the dif-

ference f(l̂)− d(p, r, ψ) is actually produced but does not circulate in the market.
Let the demand constraint be binding at y. To violate the demand constraint at
the entering time, the firm needs to reduce its price by dp < 0 whereas producing
dy = f ′(l̂) dl with increased employment dl. The firm receives the increase of de-
mand by (∂d/∂p) dp+[(∂d/∂ψ)/n] dy assuming n equally differentiated firms exist
in the economy, i.e. each firm receives 1/n of total demand, and thus dψ = dy/n.
Increase of production cost accompanying this action is wdl > wf−1′(y) dy since

dl̂/dl < 1. Taking increase of output in circulation z as denominator and letting
n→ +∞, marginal revenue is p+d (∂d/∂p)−1 for all domain. On the other hand,
marginal cost for z > y is w dl/dz = w dl/dψ > nwf−1′(w) which diverges in this

domain, and that for z ≤ y is w dl/dz = w/(f ′(l̂) dl̂/dl). Note that wage payment
to the hiring sector is included in the cost. Figure 1 depicts the argument above
in an analogous fashion to Chamberlin (1962). It is important to emphasize that

D

d

d MC

1

output price

y

output z

D

MR
O

MC

b

bc
+∞ as n → +∞

ex post

Figure 1. : Reluctance of transcending the effective demand

the adjustment process is time consuming so that income level is determined in
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each moment of adjustment. In off-equilibrium context, the firm regains control
of output price since the bargaining of real wage rate is based on market output
price and individual output price is allowed to differ in off-equilibrium,7 so that
the individual output price appears in the vertical axis as a control variable. The
main departure from the familiar diagram of monopolistic competition is that the
horizontal axis takes output in circulation z, i.e. output met by demand. Since
the object of measurement is the cost for off-equilibrium actions, the diagram
should be understood as drawing ex post equilibrium z for each action. Com-
pared to the case in which horizontal axis is taken to be planned output, one unit
in the latter is transformed to 1/n units in the latter only in z > y domain. The
complementary domain is equivalently transformed. By taking horizontal axis in
this way, the demand curve drawn here can be understood as the effective demand
schedule. Namely, successful expansion of industrial supply accompanies increase
of income and demand, but individual expansion without followers will not. The
former extends the domain z ≤ y but the latter do not. The industry demand
curve is drawn as a kinked curve DD. It is a smooth curve on the planned axis,
but as a result of the above transformation, it is drawn as a kinked curve in the
diagram. dd shows the individual demand curve. It is a smooth curve on this
diagram but should be kinked on the planned axis. The cost structure is asym-
metric between expansion and reduction of supply as derived above. Reflecting
strictly positive profits in equilibrium, the marginal cost curve stays below the
marginal revenue curve in z ≤ y domain, but it jumps above the demand curve
if n is large enough in domain z > y. Integrating the optimal condition (8) in
off-equilibrium context gives

λ =

∫ ∞

0
(MR−MC) f ′(l̂) e−(r+σ)tdt

where the right hand side goes negative as n becomes large. It implies additional
employment reduces the value of firm. Therefore, no individual firms have in-
centive to transcend the shared belief on the demand upper bound. The phrase
sufficiently differentiated output good we have already used without definition
means that n is large enough so that the marginal cost in z > y domain becomes
strictly greater than the marginal revenue.
It is worthwhile examining what happens in the case of non-differentiated out-

put goods, i.e. the case of n = 1. In such a case, reduced output price will attract
infinite amount of demand which grants the attempt of constraint violation. All
firms will do so, which implies that contemporaneous real wages settled by bar-
gaining are unchanged, demand constraint is broken, and ex-post interest rate
rises only by ignorable degree. The above argument suggests that the existence
of demand constraint is peculiar to industrialized goods, not homogeneous ones

7Analogous to the argument made by Arrow (1959) that competitive firms behave as monopolists
in off-equilibrium, even though real wage rate is fixed by bargaining in equilibrium in this model, firms
have control on price setting in off-equilibrium state.
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such as agricultural goods.

In the present paper, we want to focus on time-discontinuity of production level
and that of µ which can be interpreted as the impact of unexpected variation of
y on the value of the firm, in addition to showing optimal behavior of the firm
facing convex hiring cost. So we start with the following proposition.

PROPOSITION 1: If λ > 0, then µ is time-continuous and λ is continuously
differentiable on the optimal path.

PROOF:

If demand constraint is not binding in any open domain in time, then µ ≡ 0 on
that domain so time-continuity of µ on the domain is obvious. Suppose demand
constraint is binding in any open domain in time. Perturbation specification of
the problem à la Bryson, Denham and Dreyfus (1963) would be

dΠ(ti, lti) =

∫ ti+1

ti

(

∂H

∂l
δl +

∂H

∂l̂
δl̂ +

∂H

∂x
δx

)

e−r(t−ti)dt

−

∫ ti+1

ti

λ e−r(t−ti) δl̇ dt+

(

∂Π(T, lti+1
)

∂lti+1

− λti+1

)

e−r(ti+1−ti)δlti+1

which should be stationary at optimum for i-th subinterval after dividing [0,∞)
into finite subintervals whereH is the current value Hamiltonian, i = 0, 1, 2, . . . , N ,
t0 = 0 and tN+1 = ∞. To minimize the subdivision of time, let N be the num-
ber of indifferentiability of l in the time scale so that l is indifferentiable on ti.
This subdivision of time scale is necessary because the second term of the right
hand side of the above equation needs to be integrable by parts to obtain (5).
It requires the time derivative of l to exist. Namely, (5) is applicable only to
the interior time of each subinterval. Now, choose t ∈ {s : λs > 0}. Then,

x = 0 and l̂ is differentiable from l̂ = f−1(y) and differentiability of y, which
implies l is differentiable from (1). It implies t is interior time of subintervals
and indeterminate function λt can be safely defined as a differentiable function
via integration by parts of the second term of the above equation so that (5)
holds. Then, the first-order condition (6) implies time-differentiability of µ on
the domain. Finally, suppose that the demand constraint is binding at time T
under consideration and there exists a point where the constraint is unbinding
in any open neighborhood of T with radius ε > 0, which is denoted by Nε(T ).
Then, corresponding to a sequence of ε converging to zero, we can take converging
subsequence of time t ∈ Nε(T ) at any of which f ′(l̂t) = λ g′(lt − l̂t) holds from

the first-order condition (6) when λ > 0 and also f(l̂t) ≤ yt holds. On the other

hand, if µT > 0, then (6) implies l̂T < limt→T l̂t from the continuity of l and λ.

Since yT = f(l̂T ) < limt→T f(l̂t) ≤ limt→T yt, it contradicts to the continuity of
y. Therefore µT = 0. It implies that µ is continuously connected at time T when
transiting from domain µ > 0 to µ = 0 or vice versa. Finally, (5) and (5) obtain
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λ̇ = (r + σ)λ− [(1 − µ)f ′(l̂)− w]. If µ is continuous, it implies λ is continuously
differentiable. �

III. Steady states

Steady states occur with λ > 0, obviously with no firing. Since the present
model has external input y, there exist multiple steady states depending on it.
As explained in the previous section, individual firms do not have incentive to
break the demand constraint when outputs are sufficiently differentiated so y is
a representation of the degree of coordination among firms. It is shown that in
steady states with demand constraint in effect, relaxation of the constraint implies
the increase of the effective marginal value of employment.8

1. Unconstrained steady state

This is the efficient steady state characterized by µ = 0. λ̇ = 0 in the costate
dynamics (5) gives

λss =
w

g′(lss − l̂ss)− (r + σ)
> 0,

which implies xss = 0 where subscript “ss” represents the value at the uncon-
strained steady state. Inada conditions guarantee that the first-order condition
(6) provides an interior solution when λ > 0 so we have f ′(l̂ss) = λss g

′(lss − l̂ss).

Together with l̇ = 0 in labor transition (1), (lss, l̂ss) is characterized to solve

f ′(l̂ss) =
g′(lss − l̂ss)

g′(lss − l̂ss)− (r + σ)
w(9)

g(lss − l̂ss) = σ lss,(10)

the solution of which exists when r > 0.9 Note that (9) implies f ′(l̂ss) > w. The
marginal productivity of labor in the production sector is strictly greater than
the marginal cost of labor simply because some labor is absorbed in the hiring
activity. If hiring efficiency rises, then the difference between f ′ and w shrinks.

2. Constrained steady states

Constrained steady states are inefficient steady states characterized by binding
demand constraint with µ > 0. They satisfy f(l̂css) = y where subscript “css”

8As a benchmark, in spot production with demand constraint, the effective marginal value becomes
the present value of wages. It is derived from the fact that, in each moment, maxl f(l) − w l subject to
f(l) ≤ y implies w = (1− µ) f ′(l) with µ ≥ 0.

9If r ≤ g′(L) − σ < 0 where L is the solution in g(L) = σL where all employment is dedicated to
hiring, the solution may not exist. However, since negative discount rate is unlikely to continue forever,

we can safely eliminate such a case. It implies g′(L) > r+σ. By decreasing returns of g, g′(l− l̂) > r+σ
holds for any unconstrained/constrained steady states.
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represents the value at constrained steady states. For their existence, y must be a
constant function. Since stationarity requires the employment in the hiring sector
to be strictly positive, we have η = 0. Also with stationarity in labor transition,
the constrained steady state for given y is characterized by followings:

λcss =
w

g′
(

lcss − f−1(y)
)

− (r + σ)
> 0(11)

g
(

lcss − f−1(y)
)

= σ lcss(12)

The relation between unconstrained and constrained steady states is depicted in
Figure 2. The curve labeled λ̇ = 0 shows the costate steady state condition for

l̂

l

f−1(y)

unconstrained
steady state

l̇ = 0

bb

b

b

b

µ > 0

λ̇ = 0 with µ = 0

(shaded area)

l̂ss

lss

lcss

steady state
constrained

for given y

Figure 2. : Unconstrained and constrained steady states

unconstrained case (9). The curve labeled l̇ = 0 shows the labor steady state

conditions (10) and (12). Since f−1(y) ≤ l̂css, stationarity conditions for labor
(10) and (12) imply that lcss ≤ lss the inequality of which is strict except for the

obvious case f(l̂css) = y. Therefore, the curve l̇ = 0 always locates below the

curve λ̇ = 0 for any l̂ ≤ l̂ss. Unconstrained steady states locate on the curve
l̇ = 0.
λcss given by (11) is expressed in another form λcss = [(1−µ)f ′(l̂css)−w]/(r+σ).

It reads the marginal value of employment for the firm is the discounted present
value of (1 − µ)f ′(l̂css) − w in which the discount rate is affected by separation

premium. In this place, (1− µ)f ′(l̂) is termed the effective marginal productivity
of the production sector. Facing the demand constraint, effective price of output
is discounted by the shadow price of the constraint. Hiring sector has costate
variable λ as its internal output price, which is also indirectly affected by present
and future shadow price of the demand constraint.

PROPOSITION 2: At a constrained steady state, increase in demand y brings 1)
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increase in total employment and in both production and hiring sectors, 2) increase
in marginal value of employment, 3) increase in effective marginal productivity of
the production sector and increase in marginal productivity of the hiring sector,
and 4) decrease in demand duals.

PROOF:

1) Applying the implicit function theorem to (12) obtains dlcss/dy = g′/[f ′(g′−

σ)] > 0. On the other hand, dl̂css/dy = 1/f ′ > 0. They result in

(13)
dl̃css
dy

=
dlcss
dy

−
dl̂css
dy

=
σ

g′ − σ

1

f ′
> 0.

2) Similar application of the theorem to (11) derives dλcss/dl̃css = −g′′λ2css/w,
from which (13) implies

dλcss
dy

= −
g′′λ2css
w

σ

g′ − σ

1

f ′
> 0.

3) From the above result,

dλcssg
′(l̃css)

dy
=

(

λcssg
′′ +

dλcss

dl̃css
g′
)

dl̃css
dy

=

(

1−
g′λcss
w

)

g′′λ
dl̃css
dy

= (r + σ)
dλcss
dy

> 0

where λcssg
′(l̃css) is the marginal productivity of the hiring sector and from the

first-order condition (6), it equates to the effective marginal productivity (1 −

µ)f ′(l̂css).

4) Since 1− µcss = λcssg
′(l̃css)/f

′(l̂css),

d(1− µcss)

dy
=
r + σ

f ′
dλcss
dy

−
λcssg

′f ′′

(f ′)3
> 0,

which brings dµcss/dy < 0. �

The result that the effective marginal productivity and the marginal value of labor
increase may worth attention. Depending on the wage bargaining process, they
can imply the rise of wages. It means that increase in both wages and employment
coexist without technological progress. The last result of the proposition shows
that the impact of the unexpected variation of demand on the firm’s value becomes
smaller as the demand level becomes higher.
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IV. Firing

Now, we embark on untidy non-steady states. Since the transition of labor
is linear in firing, we need precise treatment on its edge. Employment becomes
redundant if both current and future production requires smaller labor, which
reflects in y and λ. Under the assumption that y is differentiable, the adjustment
of labor is fulfilled within continuous variation, except for the case that initial
employment is out of feasible range with any optimal paths. With feasible initial
employment, firing is done with λ = 0 which implies singularity of the problem,
i.e. a non-standard procedure is required to obtain the optimal path.
In the following description, the following notations are used for subsets on the

time scale. Define the firing phase Xt the maximum connected set on time scale
including t where x∗s > 0 for any s ∈ Xt and the asterisk shows the optimal
path. Formally, Xt :=

⋃

i {Ii ∋ t : x
∗
s > 0, ∀s ∈ Ii} where Ii is a closed interval.

If x∗t = 0, then Xt = ∅. The closure of Xt writes in an interval form X̄t =
[tE, tL] where tE is the entering time in Xt and t

L is the leaving time from Xt.
Although they are defined interval-wise, they are used without mentioning it if the
objective interval is obvious. Similarly, the non-hiring phase Λo

t is defined to be
the maximum connected set on time scale including t where λ∗s = 0 for any s ∈ Λo

t ,
i.e. Λo

t :=
⋃

i {Ii ∋ t : λ∗s = 0, ∀s ∈ Ii}. If λ∗t > 0, then Λo
t = ∅. In the interval

form, Λ̄o
t = [te, tl] where the entering and leaving time from/to Λo

t are denoted
by te and tl, respectively. Again, the same abuse of notation applies as X̄t. Also,
define Λ−

t :=
⋃

i {Ii ∋ t : λ∗s < 0, ∀s ∈ Ii} and W :=
{

t : l∗t < f ′−1(wt)
}

. Union of
those intervals are denoted without subscripts by X :=

⋃

tXt, Λ
o :=

⋃

t Λ
o
t and

Λ− :=
⋃

t Λ
−
t . Denote the set of all tE ’s, tL’s, te’s and tl’s by EX , LX , EΛ and

LΛ, respectively.

PROPOSITION 3: Xt ⊂ Λo
t for any t ∈W .

PROOF:
The result is obvious if Xt = ∅. Suppose Xt 6= ∅. Define x̄ = supt(−ẏt/f

′(lt)).

Suppose that the demand constraint holds with equality, i.e. f(l̂t) = yt for some
t ∈ Λ−

t ∩W such that Λ−
t 6= ∅. Optimal xt = x̄ leads to µs = 0 for any s ∈ Λ−

t

such that s > t since f ′(lt)l̇t < ẏt. Since µs is right-continuous, µt = 0 and
λ̇s exists for such s and t + 0.10 From (5) and (6), costate transition becomes
λ̇s = (r+σ)λs− f

′(ls)+ws < 0 for any s ≥ t. The relation is recursively justified
starting from s = t so that s ∈ Λ−

t implies l̇s < 0 which means s + ε ∈ W
and thus s + ε ∈ Λ−

t ∩ W for arbitrarily small ε ≥ 0. It ultimately causes
lims→∞ ls < 0. Therefore, any path which enters Λ−

t ∩W cannot be optimal. It
implies that Xt∩W 6⊆ Λ−

t ∩W whereas Xt ⊆ Λo
t ∪Λ−

t for any Xt 6= ∅. Therefore,
Xt ∩W ⊆ Λo

t ∩W . �

The above proposition proves Claim 1 and firing x becomes a singular control,
not a bang-bang:

10See Theorems 4.1 and 4.2 of Hartl, Sethi and Vickson (1995).
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COROLLARY 1: Firing xt is a singular control if t ∈W .

PROOF:
Since l is right-differentiable, |Xt| > 0 if Xt 6= ∅. From Proposition 3, it implies

|Λo
t | > 0. Namely, if xt > 0, then λt = 0 and λt+ε = 0 for arbitrarily small ε > 0.

Since λt is a switching function of xt, which is zero on an interval with positive
measure whenever xt > 0, xt is a singular control. �

The proposition suggests that, for a massive firing, i.e. discontinuous decrease of
employment, to happen, it should occur only once at the very beginning of the
economy, which implies that we can safely separate such a phase from the analysis
and concentrate on the dynamics after the negative “big-bang”. Since x̄ is an
artificial boundary, if such a transition were to happen, it finishes instantaneously
by a discontinuous decrease of employment, which can be understood as the limit
of dynamics when x̄ → ∞. Even if continuously large non-autonomous force
acts in the middle, it will not bring the system to the initial big-bang state since
sufficiently large continuous change of employment absorbs such a shock. Figure
3 shows a phase diagram for an unbounded autonomous case. The manifold

l̇ = 0

λ̇ = 0

O l

λ

f ′−1(w)

domain of W

A

B

D C

b

b b

S R

Figure 3. : Phase diagram for an unbounded autonomous case

l̇ = 0 is an upward sloping curve stable in terms of l that passes through the
neighborhood of the origin. That of λ̇ = 0 is downward sloping, unstable in terms
of λ, so that λ → +∞ holds as l → 0 on it and passes through l = f ′−1(w).
In the forth quadrant shown as a hatched area, there is “strong” leftward flows.
The flow instantaneously reaches to the goal as x̄ → ∞. There is a saddle path
to the unique non-zero steady state A in this particular unbounded autonomous



14 JULY 2019

case. The saddle path in the forth quadrant is drawn as almost flat downward
sloping curve in the figure. However, since x̄ is arbitrary, it should be understood
that it converges to the horizontal axis as x̄→ ∞, the optimal firing on the path
is x∗ → +∞. The same holds for any paths which reaches to any points on the
horizontal axis except interval OD. In non-autonomous case, the optimal path
is generally different from the one drawn in the diagram because phase diagram
itself transforms. If the optimal path in such a case were in the hatched light
grey area S in Figure 3, the only way that it survives as optimal is to move to
the hatched dark grey area R. In other cases, the path trespasses on the negative
employment region due to λ̇ < 0. Move from S to R is generally impossible
in the autonomous case as the vector field in the figure shows. However, non-
autonomous cases require a check whether sufficiently quick fluctuation of the
boundary of domain of W caused by external forces does not actually allow such
a move. If allowed, the path may come back to the non-hatched area surviving
as optimal. The following proposition formalizes that it never happens even in
non-autonomous cases.

PROPOSITION 4 (Impossibility of negative big-bang in the middle): If t ∈W ,
then λs ≥ 0 for any s > t along the optimal path.

PROOF:
Suppose λv = 0 at v > t and λv+ε < 0 for arbitrarily small ε > 0. Then,

from the transition (5) of λ, right-continuity of µ and continuity of w and l,
(1−µv+ε)f

′(lv+ε) > wv+ε must hold for λv+ε < 0, which implies v+ε ∈W . Then,
since x is arbitrarily large in (1), l̇ is always smaller than any non-autonomous
change of f ′−1(w), which implies the optimal path never entersW c fromW∩Λ−

v+ε,
thus diverging to ls → −∞ as s → ∞. Thus, it is excluded from the optimal
path. �

The proposition can be restated as follows with the optimal control (7).

COROLLARY 2: xt > 0 occurs only if λt = 0 for any t ∈ W along the optimal
path.

Based on the singularity of firing, the next proposition shows that it occurs only
when the demand constraint is binding and ẏ < 0.

PROPOSITION 5 (Optimal controls and effectiveness of the demand constraint):

l̂∗t = l∗t and l̃∗t = 0 for t ∈ Λo ∩W .

(14) xt = −σlt −
ẏt

f ′(lt)

and µt > 0 for any t ∈ (Λ̊o ∪ EΛ) ∩W . Moreover, µt is differentiable for any

t ∈ Λ̊o ∩W and right-differentiable for t ∈ EΛ. Also

(15) f(l∗t ) = y∗t
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for any t ∈ Λ̄o ∩W and ẏt < 0 for any t ∈ Λo ∩W .

PROOF:
λt = λ̇t = 0 for any t ∈ Λo ∩ W where λ̇ is right-derivative at t = te and

left-derivative at t = tl. Then, costate dynamics (5) implies η = w > 0 and also

l̂ = l and l̃ = 0 by complementarity. The first order condition (6) obtains

(16) (1− µ) f ′(l) = η = w.

It implies µt > 0 for any t ∈ Λ̊o ∩W since f ′(lt) > wt for t ∈ W . (16) holds
for te ∈ W from the right-continuity of µ and the continuity of l and w, so
µte > 0. Together with continuity of l, it implies that f(l∗t ) = yt holds for any
t ∈ Λ̄o ∩W . Since l̇t = −σlt − xt = ẏt/f

′(lt) holds for any t ∈ Λo ∩W , optimal
firing is given by (14). Since xt ≥ 0, it implies ẏt ≤ −σltf

′(lt) < 0. It also implies

differentiability of µt for any t ∈ Λ̊o ∩W and right-differentiability for t ∈ EΛ by
the differentiability of l and w and f ∈ C1. �

Suppose that Bt := Λo
t \ Xt 6= ∅ for some t and s ∈ Bt. If Bt consists of an

interval, then Proposition 5 implies l̇ = −σl and thus ẏ = −σlf ′(l) need to hold
on that interval. However, it is generically true that actual y will not satisfy this
condition so that we can safely assume X̄t = Λo

t almost surely if both are not
empty and if y is considered to be randomly chosen by nature.

V. Entering and leaving from the non-hiring phase

Proposition 5 brings a similar situation as optimal control problems with state
variable inequality constraints (SVICs). A state constraint equivalent to (15) in
SVICs would have worked as a binding constraint on controls only in its derivative
form as f ′l̇ = ẏ. By nature of the derivative form, it does not tell when the
constraint becomes binding or off-binding, which requires additional information
on the level. In the current problem, binding constraint (15) is not given but
derived from optimal conditions, however the same property holds. It is derived
from the truncatability of the problem into subperiods Λo and (Λo)c as do the
jump conditions in SVICs. The truncated problem for initial time 0 6∈ Λo and
EΛ 6= ∅ can be regarded as a problem with the terminal surface (15) for the
entering time te and the terminal state lte to be optimally determined. The
problem brings the terminal costate variable to be λte > 0. Since λ = 0 in Λo,
it implies costate discontinuity at entering time. The same holds for the leaving
time.
Suppose EΛ 6= ∅ and 0 6∈ Λo. Let te ∈ EΛ be the first entering time to Λo.

Regarding te as the terminal time in discretion, the truncated problem as of time
zero rewrites as follows.

(17) Π(0, l0) = max
l̂,x,te

∫ te

0

(

f(l̂)− w l − c
)

e−rtdt+Π(te, lte) e
−rte
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State transition and constraints remain the same and the terminal surface is given
by

(18) f(lte) = yte .

Define the terminal-time Lagrangean Φ(t, lt) by

Φ(t, lt) := Π(t, lt) + νe (yt − f(lt))

where νe is the Lagrange multiplier attached to the terminal surface. Define
general notations z(T−) := limt↑T z(t) and z(T+) := limt↓T z(t) for any time-
dependent variable z. Then, the terminal condition on the costate variable be-
comes

λ(te−) =
∂Φ

∂l
=
∂Π

∂l
− νef ′.

Since ∂Π/∂l = λ(te) = 0, it implies

(19) λ(te−) = −νef ′
(

l(te)
)

.

The condition on terminal time is given by H (te−)−r [Π(t
e, lte) + ν (yte − f(lte))] =

H (te+) + νeẏ−, which simplifies to

(20) f
(

l̂(te−)
)

− y + λ(te−)
[

g(l̃(te−)
)

−σl
]

= rΠ(te, l(te))− νeẏ−.

(19) and (20) settle the relation between the entering time and the costate variable
as follows.

(21)
(

l̇−(λ−)− l̇+

)

λ− = y − f(l̂−(λ−)) + rΠ(te, l(te))

where l̇−(λ−) = g(l̃−(λ−))−σl and l̇+ = ẏ/f ′
(

l(te)
)

. Note that l̇− is a function of

λ−. This condition can be interpreted as ∂Π/∂t = rΠ+ (y −wl − c) + l̇+∂Π/∂l,
i.e. the direct benefit of postponing the entering time equates the return of the
firm’s value plus instantaneous profit plus the increased value caused by change
of employment.

PROPOSITION 6: If te − ε ∈W for any ε > 0, then λ(te−) > 0.

PROOF:
Suppose λ(te−) = 0. Then, l̃(te−) = 0 and l̂(te−) = l(te−) from (6) and ν = 0 from

(19). Then, (20) becomes f
(

l(te−)
)

− y = rΠ(te−, l(t
e)). However, since l(te) is

on the terminal surface, it implies Π(te−, l(t
e)) = 0. Since the firm never operates

with Π(t, l(t)) < 0 for any t ≥ te, it means Π(t, l(t)) ≡ 0 for any t ≥ te, which in
turn implies

(22) f(l̂t) = wtlt + ct



INTERTEMPORAL DISCONTINUITY 17

for any t ≥ te. On the other hand, since λ(te) = ∂Π/∂l = 0, Π(te, l) = 0 holds for
any initial value l at the entering time. Applying similar argument as above, (22)
holds for different initial values of labor at the entering time. Pick up l(te)+ ε for
sufficiently small ε > 0. Since (22) holds for l(te), f(l(te) + ε) 6= wt (lt + ε) + ct
holds by strict concavity of f , which contradicts (22). Therefore, λ(te−) 6= 0.
However, Proposition 4 implies λ(te−) ≥ 0 if te − ε ∈W . Thus, λ(te−) > 0. �

Since λ(te+) = 0, Proposition 6 implies general discontinuity of λ at entering

time. From (21), λ(te−) > 0 and f
(

l̂(te−)
)

< y imply l̇(te−) > ẏ/f ′
(

l(te)
)

since
Π(te, l(te)) > 0. It means that the path of l “bumps” into the demand surface
as shown in Figure 4a. The effect of the same costate discontinuity is reflected
in the diagram of production possibility set in Figure 4b. The optimal path
goes into point A on the production frontier where shadow price of hiring λ is
strictly positive at the entering time and jumps to point B. Since B is bound
by the demand constraint as Proposition 5 predicts, point A must be unbound
because l̂(te−) < l̂(te+). The entering behavior is summarized in a literate manner

t

l

y = f(l)

path of l

te

negative
slope

(a) Kink in the employment path

f(l̂)

g(l̃)

y(te)O

1
λ(te

−

)

A

Bb

production
possibility

set

demand constraint at te

optimal
path

(jump)

bc

(b) Jump on production frontier

Figure 4. : Entering behavior

as follows.

PROPOSITION 7: At entering time, production discontinuously increases so
that unbinding demand constraint beforehand becomes binding afterwards. Hir-
ing discontinuously decreases from strictly positive to zero. Costate variable λ
jumps from strictly positive to zero. Demand dual µ jumps from zero to strictly
positive. Time path of l kinks so that l̇ jumps downwards.

Figure 5a draws how the jump condition (21) and the terminal surface (18) de-
termine the first entering time. Starting from the initial employment l0 and the
hypothetical initial costate value λ0, transitional equations (1) and (5) govern
the dynamics. The entering time must satisfy the jump condition (21) which is
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drawn as as a broken curve on the above plane. The time when the path of λ
encounters the surface of the jump condition is the entering time. At this time,
the production jumps from f(l̂) to f(l) and the latter coincides with y. It only
holds for the correct initial costate value. If not, the initial hypothesis on λ must
be corrected. For the rest of entering times, if exist, λ0 and l0 should be replaced
by λ(tl+) and l(t

l) where tl is the previous leaving time.

t

λ(te−)

λ

te

λ0
jump condition (21)

te

output

O

O

y = f(l)

f(l̂)

f(l)

l̂0

l0

t

(a) Entering

t

λ(tl+)

λ

tl

jump condition (26)

tl

output

0

0

y = f(l)

f(l̂)

f(l)

l̂(tl)

t

y

(b) Leaving

Figure 5. : Determining junction time

The leaving behavior is analyzed in a similar fashion. Now, consider a produc-
tion decision as of te. Again, the problem is truncated at tl ∈ Λ̄o

te to check the
differentiability at the interface of the firing phase. As we have already obtained
the optimal policy on Λo in section IV, the remaining problem is the choice of tl,
which is obtained from the terminal condition. The problem is the same as (17)
except that the initial and terminal time is replaced by te and tl, respectively,
and the discounting period is modified to the interval starting from te. So, after
applying the optimal policy on Λo, we have

Π(te, lte) = max
tl

∫ tl

te

(

y − wf−1(y)− c
)

e−r(t−te)dt+Π(tl, ltl) e
−r(tl−te).

Transitions and constraints remain the same. At the leaving time, the following
terminal constraint must hold.

(23) f(ltl) = ytl

This is required before optimization is undertaken, since Proposition 5 tells that
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the effectiveness of the constraint (15) is derived from optimality only for t ∈

Λ̊o ∩W but it extends to t ∈ Λ̄o ∩W by continuity of l, which is an assumption
imposed on the maximum principle. However, one may find subtlety in inclusion
of this terminal constraint in the problem. So let us check its validity. First, we
proceed with the constraint. The terminal condition becomes

−
[

f
(

l̂(tl)
)

− f
(

l(tl−)
)

]

− λ(tl)
[

g(l̃(tl)− σl
]

= rΠ
(

tl, f−1(ytl)
)

− νlẏ(24)

λ(tl) = νlf ′
(

l(tl)
)

(25)

where νl is the Lagrange multiplier adjoint to the terminal constraint. If there
were not a terminal condition, we can set νl = 0 which implies that λ(tl) becomes

continuous at zero. By imposing νl = λ(tl) = 0, we have f
(

l(tl−)
)

− f
(

l̂(tl)
)

=

rΠ
(

tl, f−1(ytl)
)

. Since λtl = 0, we have l̂(tl) = l(tl) implying Π
(

tl, f−1(ytl)
)

= 0.
This is impossible to happen as argued in the proof of Proposition 6. Therefore,
the terminal constraint (23) is required for the economy to exist within the frame-
work of the maximum principle. Since ν = 0 is impossible in (25), it also showed
the following.

PROPOSITION 8: λ is discontinuous at the leaving time so that λ(tl−) = 0 and

λ(tl) > 0 hold.

Next, derive the jump condition for leaving. From (24) and (25), we obtain

(26)
(

l̇+(λ+)− l̇−

)

λ+ = y − f(l̂+)
)

− rΠ(tl, l(tl)).

where l̇+(λ+) = g
(

l̃+(λ+)
)

−σl and l̇− = ẏ/f ′
(

l(tl)
)

. Note that l̇(tl+) is a function

of λ(tl+). We can rewrite (26) as

y − wl + l̇(tl−)λ(t
l
+) = rΠ(tl, l(tl)) + f

(

l̂(tl+)
)

− wl + l̇(tl+)λ(t
l
+).

It can be interpreted that, on the leaving time, the benefits of postponed and
immediate leave become equal. The left-hand side of the equation is the benefit
of postponing the leave. By retarding the leave by dt, the firm receives bound
instantaneous profits and the value of employment change according to bound
dynamics. The right-hand side is the benefit of immediate leave. By obtaining
the new state Π, the firm receives its return, and also instantaneous profits and
the value of employment change both according to the unbound path.
The leaving behavior is summarized symmetrically to the entering case.

PROPOSITION 9: At leaving time, production discontinuously decreases so that
binding demand constraint beforehand becomes unbinding afterwards. Hiring dis-
continuously increases from zero to strictly positive. Costate variable λ jumps
from zero to strictly positive. Demand dual µ jumps from strictly positive to zero.
Time path of l kinks so that l̇ jumps upwards.
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Figure 5b draws how the jump condition (26) and the terminal surface (18) de-
termine the entering time. Different from ordinary optimization problems, the
initial employment in the truncated problem after the leave is not given. The
choice of tl directly determines it according to the demand constraint (23). The
jump condition (21) drawn as as a broken curve on the above plane simultane-
ously determines λ(tl+) which corresponds to the hypothesis on λ0. If the choice

of tl is correct, the dynamics of λ (5) provides the value of λ which satisfies the
transversality condition if tl is the last leaving time. If there is another entering
to Λo, the dynamics satisfies the entering conditions described above at the next
entering time. Figure 6 draws the kink in the employment path and the jump in
the production frontier at the leaving time.

t

l

y = f(l)

path of l

tl

negative
slope

(a) Kink in employment path

f(l̂)

g(l̃)

y(tl)O

1
λ(tl

+
)

A

Bbproduction
possibility

set

demand constraint at tl

optimal
path

(jump)
bc

(b) Jump on production frontier

Figure 6. : Leaving behavior

VI. Weak labor hoarding

A labor asset model can have labor hoarding within business cycles since its
demand depends on the value of the labor asset which does not necessarily meet
the demand for the spot labor expense. In the present model with no firing cost,
it only occurs in a weak sense that firing will not take place even when the decline
in the spot labor demand is more than the natural separation. In this case, since
the value of labor is positive, they are instead hired in the hiring sector. This
is easily observed by an example. Figure 7 shows a periodic steady state of a
toy economy in which the demand has period 2π and the level of demand falls
below the unconstrained steady state only in t ∈ (0.61, 2.53) in the principal
domain [0, 2π).11 Studying the properties of periodic steady state is beneficial

11Note that this is a non-autonomous dynamical system. The periodicity is brought by that of the

demand constraint potentially binding. The toy economy has the production function f(l̂) = 5 l̂3/4 and
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Figure 7. : Periodic steady state of the toy economy

to close this type of optimization problem with infinite horizon since specifying
external force y for infinite period is literally impossible and effects of faraway
future is discounted anyway. Instead of keeping y open-ended, we can safely
close it as a loop with sufficiently long period.12 The optimal path binds to the
constraint only in its subset, i.e. t ∈ (1.05, 2.07) =: B. As shown in the first figure,

although l̂ = f−1(y) in B, employment begins to increase right after entering in
B. Redundant labor is utilized to enforce the hiring sector in preparation for
future increase of production. In Bc, the firm unboundedly chooses to operate in
a lower production level than the overall unconstrained case in which the optimal
employment is constant at l = 2.17. Note that, in the constraint binding phase,
the increase of employment is driven by the improvement of labor value shown in
the second figure. Since λ̇ = (r+σ)λ−(1−µ)f ′(l̂)+w, the rise of µ in the binding

g(l̃) = l̃3/4. Separation occurs at the rate 0.03. Discount rate is set to 0.05. The demand constraint is
y = 10 + 2 sin(t − π) and wage rate is constant at w = 3. Note that, even though demand constraint is
binding only in some subperiod, it brings periodicity upon the whole optimal path. For the properties
of periodic forced oscillation for linearized systems, see Kato, Naito and Shin (2005).

12This is true even when there is a long-run trend in y.
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phase more quickly improves the value of labor λ by adding external forces. Note
that, in the unbinding phase, the external force that affects λ is only through
the change of the marginal productivity of labor. Drastic improvement of labor
value happens more easily in the binding phase in this sense. Also, note that the
existence of a small period of the binding phase can affect the whole dynamics. In
this example, the binding phase occupies only sixteen percent of the total period.

VII. Strong labor hoarding and firing cost

On the other hand, if there exists firing cost, strong labor hoarding can arise in
the sense that part of employment is put idle. Assume that there exists convex fir-
ing cost κ(x) where κ : R+ → R, κ′, κ′′ > 0, κ(0) = κ′(0) = 0 and κ′(+∞) = +∞.
This specification implicitly assumes that firing activity does not consume inter-
nal human resources. This would be approximately true if sufficient information
on worker properties that is necessary for selection of firing target is already
accumulated within everyday work, and if the main cost of firing is pecuniary
compensation. We also impose a moderate assumption that f ′(l̂) ≥ w reflecting
the bargaining outcome that the value of profits is strictly positive. We modify
the objective function to Π = max

l̂,x

∫∞

0

(

f(l̂) − w l − κ(x) − c
)

e−rtdt, the labor

transition to l̇ = g(l̃)− σl− x where l̃ is the employment in the hiring sector and

add conditions l̃ ≥ 0 and l̂ + l̃ ≤ l to allow for idle employment. Denote adjoint
variables to the last two constraints by η and θ, respectively. The demand con-
straint is unchanged. Also, we can safely omit the constraint l̂ ≥ 0 as far as y > 0
holds. Then, the first order conditions become

(1− µ) f ′(l̂) = g′(l̃)λ+ η = θ(27)

x =

{

0 if λ ≥ 0

κ′−1(−λ) if λ ≤ 0.
(28)

Costate dynamics is unchanged from (5). Different from the previous model,
λ < 0 is required for firing to exist. Suppose λ < 0 so that x > 0. From (27) and
µ ≥ 0, we get η > 0 and l̃ = 0. If µ = 0, (8) implies λ̇ < 0. If µ = 0 continues
to hold, it finally violates the constraint l ≥ 0. So, there must be a period that
µ > 0 holds until λ ≥ 0 is achieved. Take such a period. Since µ > 0, it requires
l̇ = ẏ/f ′(f−1(y)) as far as we assume l̂ = l, which is generically impossible for a
general function y. So, µ = 1 > 0, θ = 0 and thus the labor hoarding relation
l̂ = f−1(y) ≤ l generically holds.

VIII. Implication to linear firing cost

The firing cost in the previous section is specified an exogenous factor repre-
sented by κ(x). Such specification minimizes alteration of the basic model but
may blur the actual origin of the cost. If the origin is viewed as that of human
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resources directed to firing activities, it would be natural to assume κ(·) to be con-
vex with the same reason as the hiring cost. A formal specification for such firing
cost should extend the basic model to add the firing sector. However, empirical
studies such as Kramarz and Michaud (2010) show that there is quite different
firing cost structure among different countries, implying that empirical total fir-
ing cost may need to keep functional form of κ(·) more general. Kramarz and
Michaud (2010) points out firing regulations in France and finds linear firing cost
from French data. If firing cost arising from the human resources is negligible,
the total firing cost may be indeed almost linear. In such a case, the singularity
results of the basic model apply, changing the definition of Λo being intervals of
λ = −k if κ(x) = kx. It assumes that firing cost does not accompany fixed cost.
Then, the optimal condition for firing (7) changes to

x =











0 if λ > −k

[0, x̄] if λ = −k

x̄ if λ < −k

for arbitrarily large x̄, whereas other conditions are unchanged. It implies that
there exists no-firing and no-hiring interval in λ, i.e. −k < λ ≤ 0. In that interval,
η > 0 and θ ≥ 0 hold in (27). The same arguments in the previous section apply
and in general strong labor hoarding is observed in that interval.

IX. Wages

Based on the optimal behavior of the firm derived above, one can investigate
the implication to the bargained wages. Let employee’s value be denoted by
E and that of the unemployed by U . Matching rate for the unemployed is µ.
Unemployment benefit is b. Then, the dynamics of E and U satisfy

rEt = wt + σt (Ut − Et) + Ėt

rUt = bt + µt (Et − Ut) + U̇t

which gives the relation for employee’s premium in value

(29) Ėt − U̇t = (r + µt + σt) (Et − Ut)− (wt − bt) .

Assume that employment contract is made in each moment before production
activity is undertaken and the wage rate is filled in the contract. The wage
bargaining scene is quite different between the firing and non-firing phases. In
the firing phase, they face a negotiation about who should be eliminated from the
coalition in the firm. The situation is naturally noncooperative. Since the number
to hire is already settled according to the optimal hiring plan of the firm, the task
of the labor-management negotiation is to select the ones to hire. The situation
can be drawn as a one-shot noncooperative game where each worker offers wages
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he/she is willing to accept and the firm decides take or leave for each worker. The
total number the firm hires is strictly less than the number of current employees.
The payoff of workers is E if employed and U if unemployed. The payoff of the
firm is the negative of the employment cost which is the sum (integral) of wages

for all employed workers, −
∫ l

0 w(i) di where i is an index of workers and w(i) is
limited to a measurable function.13 Then, Nash equilibrium is characterized by
E(w) = U . Namely, in the firing phase, Et = Ut for any t ∈ Λo holds which
implies Ėt = U̇t for any t ∈ X ⊂ Λo. It implies

(30) wt = bt

for any t ∈ X from (29).

On the other hand, wage bargaining in the non-firing phase is cooperative. The
wage rate here is assumed to be settled bilaterally via generalized Nash bargaining
solution. Namely, wage function maximizes generalized Nash product

(31) N := λβ (E − U)1−β

where β ∈ [0, 1] is a parameter representing the relative bargaining power between
the firm and a worker. Given that cooperation collapses at the entering time to
the firing phase, value of players is evaluated up to the next entering time. (8)
implies that the costate variable of the firm becomes

λt =

∫ te

t

[

(1− µξ) f
′(l̂ξ)− wξ

]

e−
∫ ξ
t
(r+σs)dsdξ + C

where C is an integration constant. It implies the derivative of the costate variable
becomes

(32) d(λt) = −

∫ te

t

δwξ e
−

∫ ξ
t
(r+σs)dsdξ

for a variation of a wage function δw. On the other hand, the value premium of
employees is obtained from (29), i.e.

Et − Ut =

∫ te

t

(wξ − bξ) e
−

∫ ξ
t
(r+µs+σs)dsdξ + C.

It gives the derivative of the value premium

(33) d (Et − Ut) =

∫ te

t

δwξ e
−

∫ ξ
t (r+µs+σs)dsdξ

13In other words, this is a limit of a finite game and the equilibrium is confined to the limit of equilibria
in those finite games.
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for a variation of a wage function δw. Then, the derivative of (31) is given by

dN = λβ−1
t (Et − Ut)

−β ×
∫ te

t

[

(1− β)λξ e
−

∫ ξ
t (r+µs+σs)ds − β (Eξ − Uξ) e

−
∫ ξ
t (r+σs)ds

]

δwξdξ

using (32) and (33). The coefficient of δw is zero at extremum, which implies

β (Eξ − Uξ) = (1− β)λξ e
−

∫ ξ
t µsds.

Using (32) and (33) again, the above relation becomes

∫ te

t

wξ e
−

∫ ξ
t (r+µs+σs)dsdξ

=

∫ te

t

[

βbξ + (1− β) (1− µξ) f
′(l̂ξ)

]

e−
∫ ξ
t (r+µs+σs)dsdξ,

which must hold for any t ∈ (Λo)c. Thus, differentiating by t obtains

(34) wt = βbt + (1− β) (1− µt) f
′(l̂t).

Wage equation (34) has some novel implications. First, when the demand con-
straint is binding, lower the income, lower the wage rate at steady states. This is
the direct result of Proposition 2. It is because even though the marginal produc-
tivity of labor (MPL) rises, the effective MPL (1−µt) f

′(l̂t) falls due to the rise of
µt. Second, even though the demand constraint is not binding, if it is expected to
be binding in future, the current wage rate is lowered. This is because lowered λ
causes the rise in the share of employment in the production sector for given total
employment, which leads to the decrease of MPL. Third, (30) and (34) imply that
wage rate becomes discontinuous at junction times. At entering time to the firing
phase, the wage rate discontinuously falls to the same level as the unemployment
benefit. Leaving time from the firing phase shows a symmetric move.

The main model in the present paper adopted exogenous wage bargaining.
However, the result obtained here can be used to endogenize it. Wage equation
(34) implies that more employment in the production sector tends to lower the
wage rate, which the firm now takes into account. So, the first order condition
(6) becomes

(6’) (1− µ)
[

f ′(l̂)− (1− β) f ′′(l̂) l
]

= λ g′(l − l̂) + η

which has an effect to raise the share of employment in the production sector
than the original model.
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X. Conclusion

The represented model may seem to have imposed too much distortions on a
pure competitive model. However, the basic assumptions introduced as distor-
tion are only existence of variety both in goods and workers. Other conditions
are derived from there. Whereas variety of goods are observable, that of workers
are not by nature of human ability which causes search in face of hiring. There-
fore, their treatment is not symmetric. The convex cost of hiring rises naturally
from decreasing returns of individual hiring activity, which prohibits jumps to
the steady state. It implies that the “transition” process matters. Moreover,
sufficiently high degree of differentiation in output goods does not always allow
simple transition to the unbounded steady state. Rather it confers a main role of
determination of the whole path on coordinated expectation. In those cases, the
transition process is not a transition any more.
Viewing the problem from the perspective of the maximum principle, the present

model showed that the jump of costate variables can occur only with control con-
straints in singular problems. Jump condition of the state-constrained problems
have been well-known. However, singularity can bring indifferentiability of state
variables on boundary even when only control constraints are included in the
problem, which truncates the problem into subperiods in a similar fashion to the
state-constrained problems and brings about the costate jumps.

REFERENCES

Abowd, John M., and Francis Kramarz. 2003. “The Costs of Hiring and
Separations.” Labour Economics, 10(5): 499–530.

Arrow, Kenneth J. 1959. “Toward a Theory of Price Adjustment.” In The
Allocation of Economic Resources. , ed. M. Abramovitz et al., 41–51. Stan-
ford:Stanford University Press.

Beaudry, Paul, and Franck Portier. 2004. “An Exploration into Pigou’s
Theory of Cycles.” Journal of Monetary Economics, 51(6): 1183–1216.

Blatter, Marc, Samuel Muehlemann, and Samuel Schenker. 2012. “The
Costs of Hiring Skilled Workers.” European Economic Review, 56(1): 20–35.

Bryson, Arthur E., Jr., W. F. Denham, and S. E. Dreyfus. 1963. “Optimal
Programming Problems with Inequality Constraints I: Necessary Conditions for
Extremal Solutions.” AIAA Journal, 1(11): 2544–2550.

Chamberlin, Edward Hastings. 1962. The theory of monopolistic competition.
. 8th ed. ed., Cambridge, Mass.:Harvard University Press.

Hartl, R., S. Sethi, and R. Vickson. 1995. “A Survey of the Maximum
Principles for Optimal Control Problems with State Constraints.” SIAM Rev.,
37(2): 181–218.



INTERTEMPORAL DISCONTINUITY 27

Johnson, C., and J. Gibson. 1963. “Singular solutions in problems of optimal
control.” IEEE Transactions on Automatic Control, 8(1): 4–15.

Kato, J., T. Naito, and J. S. Shin. 2005. “A characterization of solutions in
linear differential equations with periodic forcing functions.” Journal of Differ-
ence Equations and Applications, 11(1): 1–19.

Kelly, Henry J., Richard E. Kopp, and H. Gardner Moyer. 1967. “Singu-
lar extremals.” In Topics in optimization. Vol. 31 ofMathematics in Science and
Engineering, , ed. George Leitmann, Chapter 3, 63–101. New York:Academic
Press.

Kramarz, Francis, and Marie-Laure Michaud. 2010. “The Shape of Hiring
and Separation Costs in France.” Labour Economics, 17(1): 27–37.

Rozonoer, L. I. 1959. “Pontrjagin maximum principle in the theory of optimum
systems II.” Avtomatica i Telemekhanika, 20(11): 1441–1458. In Russian.

Yashiv, Eran. 2000. “The Determinants of Equilibrium Unemployment.” Amer-
ican Economic Review, 90(5): 1297–1322.

Yashiv, Eran. 2006. “Evaluating the Performance of the Search and Matching
Model.” European Economic Review, 50(4): 909–936.

Yashiv, Eran. 2007. “Labor Search and Matching in Macroeconomics.” Euro-
pean Economic Review, 51(8): 1859 – 1895.


